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Qualitative Model-Based Diagnosis

Using Possibility Theory*

Cliff Joslyn**

Abstract

The potential for the use of possibility theory in the qualitative model-based diagnosis of spacecraft
systems is described. The first sections of the paper briefly introduce the Model-Based Diagnostic
(MBD) approach to spacecraft fault diagnosis; Qualitative Modeling (QM) methodologies; and the
concepts of possibilistic modeling in the context of Generalized Information Theory (GIT). Then the
necessary conditions for the applicability of possibilistic methods to qualitative MBD, and a number
of potential directions for such an application, are described.

Possibility theory is being developed as an alternative to traditional theories of uncertainty. While

possibility is logically independent of probability theory, they are related: both arise in Dempster-

Shafer evidence theory as fuzzy measures defined on random sets; and their distributions are

fuzzy sets. Together these fields comprise the new field of Generalized Information Theory.

Possibilistic processes, which generalize interval analysis, are based on a set of partially overlapping

intervals, resulting in non-additive weights on a set of alternatives. Thus they are suitable for qualitative

modeling methods, which inherently require loose representations of uncertainty, and typically involve
interval analysis.

Qualitative methods are appropriate for modeling complex systems, such as spacecraft, where the in-

teraction among the large number of parts and varying environmental conditions results in the possibility

of unpredictable behavior and long-run departure from established steady-state domains. Therefore it is

hypothesized that possibilistic methods may be useful for qualitative model-based diagnosis and trend

analysis of spacecraft systems.

1 Model-Based Diagnosis

The model-based approach to systems diagnosis (MBD) [17] is based on the premise that knowledge

about the internal structure of a system can be useful in diagnosing its failure. In MBD, a software model

of the system, given inputs from the real system, generates and tests various failure hypotheses.

A typical MBD approach (derived from some of the standard literature [2, 7, 16]) to diagnosing a

spacecraft (here described as some internal system whose sensor measurements output to a telemetry

stream) is shown in Fig. 1.

An alarm is a report that some observed system attributes have departed from nominal, and entered

error, conditions, usually by exceeding some threshold values; a prediction is a report that some system

attributes should be in certain states; a fault hypothesis is a list of system components which may
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Figure 1: A typical model-based diagnostic system.

have failed; and an error is a report of a discrepancy between predicted and measured system attribute

states.

The overall MBD system then involves two distinct spacecraft models. The fault generation model

(FGM) takes inputs from telemetry, alarms, and errors, and either produces anew, or modifies existing,

fault hypotheses. The behavior model takes inputs from telemetry and fault hypotheses, and outputs

predictions. These are then corroborated against telemetry to produce errors. The fault hypotheses

act to modify the behavior model so that it predicts system behavior as if the hypothetical system

components had actually failed.

Both models can be difficult to construct, typically involving delicate tradeoffs among accuracy,

precision, and tractibility. But the FGM, as the heart of the MBD approach, is particularly complex and
involved. The FGM could be, for example, an inversion of the behavior model (as for Dvorak and Kuipers

[7]) or a decision tree (as for Shen and Leitch [31]). Through backwards reasoning a variety of subsets
of components can be identified, any of which are consistent with the given telemetry and alarms.

Filtering is the process by which error output is used to prune the set of fault hypotheses. If the

prediction of the behavior model as modified by a particular fault hypothesis produces errors, then that

fault hypothesis is not retained. As the system is monitored over time, further observations narrow the

class of fault hypotheses. Achieving the null set indicates model insufficiency. But if the overall MBD

system stabilizes to a non-empty set of fault-hypotheses, then these are advanced as possible causes of

the failure.

2 Qualitative Modeling

Qualitative modeling (QM), usually considered a part of artificial intelligence, can be broadly described

as the attempt to deliberately model systems at a high level of abstraction from the actual systems
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themselves.Of coursethis approachproducesmodelswhichare lessprecisethan they might be, but
with the tradeoffof potentiallygreatertractibility andaccuracy(the lessyousay,thebetteryourchance
of beingright).

QMmethodscanbe usefulwhenthereis only a poor modelof the original system,or whenthere
aremissingor incompletedata. This canhappenwhensystemsare incompletelyspecified,whenthey
haveparametersor stateswhicharen'talwaysknownwith certainty,or whencomplexitymakesdetailed
predictiondifficult. For moreinformationabout QMin general,seethe anthologieseditedby Bobrow
[1],andFishwickand Luker [10], and survey articles by Fishwick [8] and Guariso, Rizzoli and Werthner
[14].

There are a variety of broad approaches within QM, which come under the names of naive physics,
qualitative physics, qualitative simulation, qualitative reasoning, qualitative dynamics, etc. There are

also a number of specific methods, including bond graphs, causal loop modeling, natural language mod-
eling, "lumped" state space models, and inductive approaches.

In this paper the QM methods of most interest are those which use uncertainty distributions on state

variables, and mixed interval- and point-valued dynamical systems. In models using uncertainty distri-

bution methods the uncertainty about some attribute is represented mathematically by weights on all

possible values. The set of weights, as a distribution, acts as a meta-state in the space of all possible
distributions, and functional equations relating these meta-states produce predictions about the distribu-

tion meta-state at future times. Models using probability distributions are familiar as Markov processes

and other kinds of stochastic models, and these have correlates in possibility theory (see Sec. 3.2). These
methods are actually semi-qualitative, since the numerical representation of the distribution adds a
quantitative component.

In an interval-valued dynamical modeling system like QSIM [28], a precise point-valued dynamical

system of differential or difference equations is replaced by a homomorphic interval-valued process.

Typically qualitative variables are identified within certain intervals, some relatively unconstrained (for

example z E [0, oc)), and some constrained by landmark values (for example x E [Xmin, Xmax]).

Qualitative variables are then generally related in three ways:

Functional: For example, if y = M-(x) then y is a monotonically decreasing function of x, so that if
x E [0, Xmax) then y E (-oc, 0] or y E (M-(xmax), 0].

Arithmetic" Standard mathematical operations can also be represented qualitatively, for example if

x E [0, Xm_x] and y E (-ec, 0], then xy E (-co, 0], but x + y is unknown.

Dynamic: Change of state is represented by qualitative magnitude and direction. Qualitative differen-

tial relations link directions with magnitudes, for example given y = dx/dt, then

x increasing _ y E (0, oc), z decreasing _ y E (-oc, 0).

Of course, determinative results may not be available in such a qualitative model. For example, we

saw above that x + y could be any value in (-oc, oc). Similarly, the existence of landmark values leads to

uncertainty as to whether a landmark has been crossed. To account for each possibility, two alternatives

must be branched off. Therefore in general, QM systems have a tree of possible system behaviors, and

external factors (heuristics or other constraints) may be required to prune that tree.

QM has been applied to MBD to produce qualitative model-based diagnostic systems. For example,

in the approach of Dvorak and Kuipers [7], model predictions are intervals of possible system state

values. Stochastic methods, for example Bayesian networks [12] and Markov processes [13], have been
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usedextensivelyin MBDapplications.And recentlyShenand Leitch [31, 32] have advanced the FUSIM

method for qualitative MBD which uses fuzzy arithmetic (see Sec. 4.2).

3 Possibility Theory

Possibility theory was originally developed in the context of fuzzy systems theory [34], and wasthus

related to the kinds of cognitive modeling that fuzzy sets are usually used for. More recently, possibility

theory is being developed as a new form of mathematical information theory complementing probability

theory in the context of Generalized Information Theory (GIT). The author is developing possibility

theory based on consistent random sets, and also an empirical semantics for possibility, including possi-
bilistic measurement procedures and applications to the modeling of physical systems.

3.1 Possibilistic Mathematics in GIT

Table 3.1 summarizes the primary formulae of probability and possibility theory in the context of GIT

and random set theory. These are only briefly explained here; see [5, 24, 26, 27] for more information.

Given a finite universe _ := {wi}, 1 < i < n, the function ra: 2_ _ [0, 1] is an evidence function

(otherwise known as a basic probability assignment) when m(0) = 0 and _AC__ re(A) = 1. Denote

a random set generated from an evidence function as S := {(Aj,mj) : mj > 0}, where (.) is a vector,

Aj C_ _,raj := m(Aj), and 1 _< j _ N := IS[ <_ 2 _ - 1. Denote the focal set as jr :-- {Aj : mj > 0}

with core C(_') := NA3eY Aj and support U(jr) := (JAj e_r Aj.

The plausibility and belief measures on VA C__ are

PI(A) := _ mj, Bel(A) := _ mj.
Aj nA_¢ Aj C_A

Since they are dual, in that Bel(A) = 1 - PI(A), in general only plausibility will be considered below.

The plausibility assignment (otherwise known as the one-point coverage function) of S is ffl =

(Pli) := (Pl({wi})), where
eli:= _ mj. (1)

Aj 9wi

1_1is a fuzzy subset of _ that can be mapped to an equivalence class of random sets on fL

Under certain conditions the evidence values mj and the plausibility assignment values Pli are mu-

tually determining. Then N _< n, and lgl is a distribution of S. When N = n (there are exactly as

many focal elements as there are elements of the universe), then the indices j on the focal elements

Aj, and the i on the universe elements wi are equivalent, and it may be useful to use one or the other

interchangeably. This is the case in the two rightmost columns of the table.

When VAj • jr, i&l = 1, then S is specific, and Pr(A) := Pl(A) = Bel(A) is an additive probability

measure with probability distribution/Y = (pi) := 1_l and additive normalization _ipi = 1 and

operator Pr(A) = _,eA Pi.

S is consonant (jr is a nest) when (without loss of generality for ordering, and letting A0 := 0)

Aj__ C_Aj. Now II(A) := Pl(A) is a possibility measure and T/(A) := Bel(A) is a necessity measure.
Since results for necessity are dual to those of possibility, only possibility will be discussed in the sequel.

As Pr is additive, so II is maxima[

VA, B C f_, II(A kJ B) = II(A) y II(B),

272



FocalSet

Structure
Belief

Plausibility

Relation

Any

Distribution

Measure

Normalization

Operator

Nonspecificity

Strife

Semiring
Marginals

Conditionals

Process

Concepts

None

Table1: Summary of probability and possibility in GIT.

RANDOM SET

Bel(A) = _ mj
Aj CA

Pl(A) = _, mj
Aj nA¢0

Bel(A) = 1 - PI(A)

DISTRIBUTIONS: i _ j
Probability

Singletons: Ai = {wi}

{wi} = Ai
Partition

Pr(A) := Bel(A)

Possibility

Nest: Ai = {wl,...,wi}

{wl} = Ai - Ai-1, Ao := 0
Total order

_/(A) := Bel(A)

Pli = _ mj
Aj 9_ai

Pr(A) := PI(A)

Bel(A) = Pl(A)= Pr(A)

mj log 2 IAjl
3

Pi:= Pli =mi

[k_=n1 IA, oAk I]- _. mj log 2 mk _]
3

(e,®)

mi = Pi

Pr(A U B) = Pr(A)+

Pr(B) - Pr(A n B)

_Pi = 1
I

Pr(A) = _ Pi
wiEA

-_pilog2(Pi)

(+, x)
p(x) = E p(_,,y)

Y

p(z,y) = p(zly) x p(y)

p(xly) = p(x,y)/p(y)
Vy,Ep(xly) = 1

X

v := [p(xlu)]
pl =p.p

p'(x) = Ep(y) × p(_ly)

Division among

distinct hypotheses

Frequency
Chance

Likelihood

II(A) := Pl(A)

r/(A) = 1 - II(A)
n

_ri := PIi = _ mj
j=i

mi = ri - 7I'i+1,71"n+l := 0

II(a U B)

= Pr(A) V Pr(B)

Vri= 1
I

II(A) = V ri
wiEA

ri log 2
i=2

---- E (71"i -- 7I'i+1)1og2(i)
i=l

F
i i 2rri - 7ri+l log 2 ,-

< .892

(v, FI)
_-(x) = V _'(x, y)

Y

,,-(x,y) = ,_(xlny)n ,_(y)
,_(zlny)e [_-(x,y), 1]
Vy,V,_(xlny) = 1

,T

n := [,,(xlny)]
7rl = _o/-/

='(_) = V_(_) n =(xl_y)
Y

Coherence around

certain hypotheses

Capacity
Ease of attainment

Distance, similarity
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whereV is the maximumoperator. As long as C(5r) _ 0 (this is requiredif 5r is a nest), then

-- (ri) := lffl is a possibility distribution with maximal normalization _/i ri = 1 and operator

II(A) = V_,eA _i. Also define the core and support of the possibility distribution

c(¢) := = 1}= c(s), := > 0}= u(s).

Nonspecificity and strife are two uncertainty measures which are defined on random sets.

They measure respectively the possibilistic and probabilistie aspects of the uncertainty or information

represented in the random set. They achieve the forms shown in the table for the possibilistic and

probabilistic special cases. Note that in the probabilistic case the uncertainty collapses to stochastic

entropy, while in the possibilistic case the strife is bounded above by a small number.

Stochastic and possibilistic processes are defined on their respective distributions when two operators

@ and ® are available such that (q), ®) form a semiring (® distributes over @), and ¢ is the operator of

the distribution. For probability, _ = +, and (+, ×) is the unique semiring.

For possibility, q_ = Y, and there are many semirings of the form (Y, [-1), where I-1is a triangular

norm (monotonic, associative, commutative operator with identity 1 [5]). ^ (the minimum operator)

and × are two of the more popular norms, as is 0 V (z + y - 1). Conditional possibility is not always

unique, depending on the norm used. The formulae for marginal, joint, and conditional probability and

possibility (which is dependent on t-l) are then shown in the table, as is the next state function for a

stochastic and possibilistic process.

3.2 Possibilistic Models

Probability and and possibility almost never coincide (only for distributions of the form (0,..., 1,..., 0)).

Semantically, probability and possibility theory are also related to very different concepts [20]. Proba-

bility is inherently additive, and is thus concerned with the dispersal or division of knowledge over a set

of distinct hypotheses, and so with concepts related to frequency.

But possibility is inherently non-additive. It is concerned with the coherence of knowledge around a

set of certain hypotheses (the core C(Tr)), and thus with ordinal concepts related to capacity. Where

probability makes very strong constraints on the representation of uncertainty (additivity), possibility

makes only very weak constraints. The maximum relation is a very weak operator, and there is a choice

of many norms to use, some of which are strong, and others of which are also weak.

So possibilistic models are appropriate where stochastic concepts and methods are inappropriate,

including situations where long-run frequencies are difficult if not impossible to obtain, or where small

sample sizes prevail. This is true in reliability analysis, for example, where failures and system entry
into non-nominal behavior domains are very rare; and trend-analysls, where even though observations

are made over a long time, the state variables of concern change only very slowly, and new domains

of behavior are only very rarely seen. In these cases the weakness of the possibilistic representation is

matched by the weak evidence available.

A general modeling relation is shown in Fig. 2, where: t, t_ are former and subsequent times; W = {w}

are the states of the world; M = {m} are the states of the model; o; W _ M is the measurement function;

r: W _ W is the movement of "reality"; and f: M _ M is the modeling prediction function.

Reality is presumably given, or at least operates on its own without our help. So to make a valid model

we are required to provide the measurement and prediction functions so that the diagram commutes.
Measurement is used both to set the initial conditions of the model and to corroborate later measurements

against the model state, while prediction is used to produce the future model state.
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Figure 2: A general modeling relation.

In a stochastic model, M = {iff}, where iff is a probability distribution of the state of the world. And

in a possibilistic model M = {77}, where 7? is a possibility distribution of the state of the world. Once

the final time possibility distribution is achieved, then a posslbilistie Monte Carlo method [24] is
required to select a final outcome.

So a possibilistic model requires possibilistic measurement and prediction procedures. Possibillstic

prediction procedures will be based on the possibilistic processes briefly outlined in Sec. 3.1. For example,

the author has defined possibilistic automata as possibilistic Markov processes [22] which generalize
non-deterministic automata.

Possibilistic measurement methods have also been developed by the author [18, 21]. The essential

requirement is the collection of the frequency of occurrence of subsets or intervals which are partially

overlapping. If the core of the observed intervals (their global intersection) is nonempty, then (1) will
yield an empirical possibility distribution.

An example is shown in Fig. 3. On the left, four observed intervals are shown. The bottom two

occur with frequency 1/2, while each of the upper two have frequency 1/4. Together they determine an

empirical random set. The step function on the right is the possibilistic histogram derived from (1).

There are a variety of well-justified continuous approximations of a possibilistic histogram. Two

examples are shown in the figure. The rising diagonal on the left is common to both. The two falling

continuous curves on the right are distinct to each. The parallelogram form marked 7r" is one of the most

commonly used continuous approximations, but it must be noted that this is only one possibility among

many, including smooth curves. This approach to possibilistic measurement generalizes to n intervals
and to the continuous case.

The core, here C(77) = [1.5, 2], being.0onempty, is included in the support U(¢) = [1,4]. If the core

were empty, then Vi Pli < 1, so that t_l would not be a possibility distribution. In this case, possibilistic

normalization procedures, which have also been developed by the author [19], would be required.

4 Possibility Theory as a Qualitative Modeling Method

Mathematical possibility, in both theory and applications, is still in the basic research phase, just out

of its infancy. For example, the axiomatic basis for possibility theory and the properties of possibility

distributions on continuous spaces are still being defined, and the semantics of possibility in physical
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Figure 3: (Left) Four example observed intervals. (Right) The possibilistic histogram and two continuous

approximations.

systems has been considered only by very few. But there are many reasons why it can be hoped, and
even expected, that possibility theory can come to play an important rote in QM in general, and in the

application of QM to MBD in particular.

Hamscher et al. have noticed some of the weaknesses of stochastic methods for MBD.

It is usually assumed that reliable failure statistics will be available, but this is in fact rare

in practice. What is needed ... is a way of working with likelihoods that could be specified

ordinally rather than quantitatively. [17, p. 452]

This is exactly what possibility theory provides, a non-additive, ordinal approach to QM which hybridizes

interval-valued dynamics and uncertainty distribution methods.

4.1 Possibility Theory and Interval Analysis

Possibility theory can be used as a generalization of interval analysis. A fuzzy interval is a convex

possibility distribution on ]R where

Vx,ye_t, Vze[x,y], _(z)>___(x)A_(y).

This is the case for the measured possibility distributions from Sec. 3.2, as shown in the example in

Fig. 3. As illustrated in Fig. 4, under these conditions, r can be represented as a set of nested intervals

weighted by their possibility values, where 7r° := UQr) as a special case, and

A standard interval [a, b] C_]R is a special case, where

1, a<_x<_b VaE[0,1], _r'_=[a,b].7r(x)= O, x<aorx>b '

For a fuzzy interval rr where 3!x E IR, 7r(x) = 1, then rr is a fuzzy number. Fuzzy arithmetic [25]

generalizes mathematical operations such as addition and multiplication from interval arithmetic [30] to

fuzzy numbers.

4.2 Possibility Theory and Fuzzy Theory

As mentioned above, possibility theory was originally developed by Zadeh [34] in the context of fuzzy

sets and fuzzy logic. For Zadeh, a possibility distribution simply was a fuzzy set by another name, and
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Figure 4: (Left) A possibility distribution as a collection of weighted intervals. (Right) The special case
of a crisp interval.

thus possibilistic information theory was strictly related to fuzzy information. This view is less than

adequate for a variety of reasons. While it is certainly true that a possibility distribution is a fuzzy set,

in GIT there are many structures which are legitimately fuzzy sets, including probability distributions.
The author provides a full discussion elsewhere [24].

Nevertheless, fuzzy theory and possibility theory do share a number of points in common. In par-
ticular, fuzzy intervals and numbers are, in fact, possibility distributions. Thus QM methods which use

fuzzy arithmetic as discussed in Sec. 4.1 are essentially possibilistic. An example is the recent work of
Sugeno and Takahiro [33].

These methods are also very popular in applications. Fuzz), arithmetic has been used as a QM method

for MBD, for example by Shen and Leitch [32] and Fishwick [9]. They use the standard methods of fuzzy

control systems, where a set of overlapping fuzzy intervals divide a quantity space into a few linguistic

values like "large positive" and "small negative". These fuzzy sets are not measured properties of the

system being modeled, and are dependent on the heuristic specification of the system modeler. Thus

they are essentially modeling the cognitive state of some human expert, rather than directly modeling
the system .in question.

This contrasts sharply with the possibilistic processes discussed in Sec. 3.2. First, they are cast

strictly within the context of mathematical possibility theory (including possibilistic processes) specifi-

cally, rather than fuzzy theory generally. Also, they are based on measurement of the system in question.

5 A Possibilistic Approach to MBD

At both the general level and in some specific ways, there are areas of MBD for which it is appropriate
to consider a possibilistic approach.

5.1 Possibilistlc Symptom and Error Detection

Typically the symptom and error detectors simply compare the measured value against a crisp interval

of nominal or predicted values [7]. This is inadequate because the resulting cutoff from nominal to error

condition is essentially arbitrary. It is natural to use a fuzzy interval to generalize this, measuring either

prediction errors or fault symptoms as the possibilistic distance of the telemetry from the predicted or
nominal system state respectively.

Consider a measured value x compared against an error fuzzy interval of the form of Fig. 4. Such a
possibility distribution could be the output of the behavior model, for instance, and would then serve

as input to the error detector. Then _'(x) is the strength of the error or alarm raised. When x 6 C(Tr),
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then r(x) = 1 and there is no alarm. When x _ U(r), then 7r(x) = 0 and the alarm is complete. In

between, an intermediate alarm is raised.

Even in situations where crisp thresholds are acceptable, they may be dynamic, varying as a result of

changing system and environmental conditions. Doyle et al. consider the situation of an earth-orbiting

spacecraft as it proceeds through sunlight and shadow.

Impingent solar radiation changes the thermal profile of the spacecraft, as does the configura-

tion of currently active and consequently, heat-generating subsystems on board. Thresholds

on temperature sensors should be adjusted accordingly. A particular temperature value may

be indicative of a problem when the spacecraft is in shadow or mostly inactive, but may be

within acceptable limits when the spacecraft is in sunlight or many on-board systems are

operating. [3]

This situation is shown in Fig. 5. Assume a variable, say the temperature t of a given component,

must be kept in a critical range as the spacecraft moves in and out of daylight. As it does so, the

range shifts as shown in the upper figure, where the transition periods begin at a change in sunlight,
and continue to thermal equilibrium. For simplicity, assume that that interval is sampled uniformly

six times during the orbital day, twice each for daylight Di, night Ni, and transition period Ti. The

possibilistic histogram for the possibility r(t) of t holding a value at any given time and a parallelogram

approximation are shown.

f
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Figure 5: (Left) Variable critical range of a component through a day-night cycle. (Right) Its possibilistic

histogram and a parallelogram approximation.

A combination of these two approaches is also possible, where instead of a crisp interval changing

over time, rather a whole possibility distribution itself changes with time.

5.2 Sensor Modeling

Although the MBD system contains two models, the behavior model and the FGM, as a whole, it is itself
also a model of the spacecraft. As such, it is dependent on its inputs from measurement, and thus

on the sensor output of the spacecraft. Thus there are modeling issues in MBD concerning the sensors

themselves.

When modeling complex systems, sensor data may be sparsely distributed, with missing observations,

and sometimes very small samples sizes. As argued elsewhere by the author [20], these are important
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conditionsfor the inapplicabilityofstochasticmethods,andwhentheyhold,possibilisticmethodsshould
beconsidered.

In this respect,thereis strongsupportin the literature for the ideathat possibility,asdistinct from
probability,hasa roleto playin QM.For example,Luo and Kayobserve

Whenadditionalinformationfrom a sensorbecomesavailableand the numberof unknown
propositionsis largerelativeto the numberof knownpropositions,an intuitively unsatisfy-
ing result of the Bayesianapproachis that the probabilitiesof knownpropositionsbecome
unstable. [29]

While Durrant-Whytetakesa typical statisticalapproach,healsonotes

A robot systemusesnotably diversesensors,whichoften supplyonly sparseobservations
that cannotbemodeledaccurately.[6]

Dvorakand Kuipersmakea similarobservationin the contextof model-basedmonitoring.

All measurementscomefrom sensors,whichcanbeexpensiveand/or unreliableand/or inva-
sive.Monitoringis typicallybasedona smallsubsetof the systemparameters,with limited
opportunity to probeotherparameters.[7]

5.2.1 Data Fusion

Possibilistic measurement as outlined in Sec. 3.2 is predicated on the observation of subsets or intervals

which are partially overlapping. It is therefore imperative to consider the source of these intervals. But

traditional measurement methods do not in general yield overlapping intervals. Rather the purpose in

designing a good sensor is to produce distinct outcomes, perhaps intervals with some uncertainty, but
still disjoint, forming equivalence classes.

But overlapping intervals may result from the combination of data from different instruments which

measure the same system attribute, either directly or indirectly. Thus random set theory in general
and possibility theory in particular is significant when considering the problem of data fusion in MBD
[12,29].

Hackett and Shah discuss data fusion in general, including indirect measurements, and the Dempster-
Shafer (that is, random set) approach.

Every sensor is sensitive to a different property of the environment; in order to sense multiple

properties, it is necessary to use multiple sensors. A system using multiple sensors that sense

a single property can be used. [15]

Dubois, Lang, and Prade [4] have also considered the data fusion problem using possibilistic logic.

Indirect Measurements First consider the situation where measurements of a component are not

made directly, but rather knowledge of the state of the component is only gained indirectly by inference

from the outputs of sensors of other components. Doyle et al. [3] offer an example from jet aircraft: low

engine thrust can be indicated by either low exhaust temperature or low turbine rotation speed, or both.

This situation is illustrated in Fig. 6. Here component A is not monitored. Its state can only be

inferred from the sensors D and E, which monitor components B and C, and which in turn are causally
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connectedto A. Eachof the intervalsreportedby D and E individually is distinct and disjoint. But
sincethe knowledgeof A providedby D andE ismediatedby B andC, together they may indicate that

A exists in two different, possibly overlapping, intervals.

Spacecraft

System

Telemetry:

Figure 6: Indirect measurements of the state of a spacecraft component.

So as the amount of sensor "penetration" (sensor/component ratio) drops, standard measurement

methods yielding frequency distributions may become less tenable, leaving only observations of random

sets.

Redundant Measurements Alternatively, a system component may be monitored redundantly by

multiple instruments. If these sensors are identical, and identically calibrated, then the result will

simply be as if there was a time-series of observations from a single instrument. But if they are mutually

discalibrated, either out of phase, or scale, or both, then the intervals reported from each instrument

may overlap.

If the sensors measure distinct modalities (e.g. pressure and temperature) of a single component, then

a process of registration [15] is required to derive a report from one in the modality of the other, or

two new reports from each in a third modality. In any event, the argument here is very similar to the
one above in the case of indirect measurements, and possibly overlapping intervals my result.

5.2.2 Sensor Failure Modeling

As mentioned above, in MBD data are not only combined from disparate sensors, they are also sometimes

incomplete, degraded, or missing altogether. Even when standard (disjoint) observations are made, under
these conditions there is the potential for the application of GIT and possibility theory.

First, in GIT standard measurements are represented as singleton sets {wl}, where each wi E 12 may

indicate a disjoint interval. In a Bayesian or stochastic approach, sensor failure is represented by a

uniform distribution over each of the {wi}, again dividing our ignorance among a set of disjoint choices.

But in GIT, a missing observation is represented, more accurately, as an observation of the entire
universe fL While this does not result in a specifically possibilistic situation, neither does it result in a

frequency or probability distribution. This is discussed more fully by the author elsewhere [24].

For a simple example, assume that a system with three states _ = {a, b, c} is observed at ten uniformly

distributed times, with a and c each seen twice, b seen three times, and three cases where the sensor made

no report. These final three cases must be recorded as observations of f/, and the specific observations
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replacedwith observationsof the singletonsets{a}, {b}, and {c} respectively.The overallempirical
randomsetis then

S= {<{a),i/5),i{b},3/lO>,<{c},i/5>,(_,3/lO)}

with plausibility assignment PI = (1/2, 3/5, 1/2), which is neither an additive probability distribution
nor a maximal possibility distribution.

When sensor data are not missing, but rather degraded, compromised, or suspect in some way, a

confidence weighting on each sensor's output is naturally not additive: our confidence about the sensors

is not divided among them, since all could be perfect or any number of them could be in any state

of degradation. Instead it is natural to represent this confidence as a possibility distribution on each

sensor's output. Again, an observation in the core indicates complete confidence, while one outside the
support indicates complete sensor failure.

Representation of a graduated degree of sensor failure allows a corresponding graduated degree of
confidence in model predictions. The need for this has been noted by Fulton.

When we detect a broken sensor, great difficult arises if we continue diagnosing other failures,

because typical rule-based systems do not degrade gently when sensors fail (because the

mapping is dependent on a complete and accurate set of sensor data). [11]

5.3 Possibilistic Models Proper

In the sequel, the term system model will refer to the FGM or the behavior model generally. So finally, it

is useful to consider possibilistic methods applied directly to the system models themselves, constructing
them as possibilistic processes such as possibilistic automata, and not as fuzzy arithmetic systems as
discussed in Sec. 4.

Input to these systems may or may not be proper possibility distributions, since both crisp (standard)
intervals and point values are special cases of possibility distributions. But if they are, then it was

discussed how telemetry, alarms, and errors can be possibilistically weighted. A possibilistic FGM then

would be responsible for producing as its output a set of fault hypotheses which are possibilistically

weighted for input to the behavior model. This would in turn generate model prediction errors with
possibilistic weights.

A system model which is a possibilistic automata can also be cast as a possibilistic Markov process.

As such, its key component is its transition matrix/'/, essentially a vector of conditional possibility

distributions as discussed in Sec. 3.1 and shown in Table 3.1. Each conditional possibility distribution

represents the possibility, for a given input, of transiting from one system state to another.

The semantics of this transition matrix in a system model is understood in terms of a subsystem-level

model where the conditional possibilistic weight indicates a non-additive coupling or relatedness among

subsystems. This could be, for example, the efficiency of the subsystem, as in the approach of Doyle et

al. [3]. Or, when considering the system model as a causal graph, as in the approach of Hall et al. [16],
the weights indicate the degree of causal connectivity between subsystems.

Thus in the possibilistic approach a system model is essentially a possibilistic network, where nonad-

ditive, possibilistic weights are placed on the arcs of a causal graph. The corresponding network appears
similar to a Bayesian network, but the mathematics is possibilistic, not stochastic. It has been shown

by the author [22] that such nonadditive possibilistic processes are actually the valid generalizations of
nondeterministic processes, where stochastic networks are not.
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6 Conclusion and Future Directions

We have considered possibility theory as a qualitative modeling method in the context of GIT (probability

theory, Dempster-Shafer evidence theory, random set theory, and fuzzy theory). We have also defined

the key concepts of model-based diagnosis, and have considered, in the context of spacecraft diagnosis,

the potential for the application of possibility theory to MBD in terms of symptom and error detection,

data fusion, sensor failure modeling, and nonadditive causal graphs.

It should be emphasized that this work is still in the basic research phase. Mathematical possibility

theory is still being developed, and most of the key concepts in possibilistic modeling (for example,

possibilistic measurement and automata) have only been defined in the past year. The application

of possibility theory to the modeling of physical systems and the semantics of possibility in empirical

contexts is being considered only by a few.

This work points to many future directions for research, including computer-based implementation

of possibilistic models proposed by the author [23], and continued exploration of the conditions for the

application of possibilistic modeling to spacecraft systems.
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